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Abstract 

A geometrical formulation of gravitational and electromagnetic fields is presented for 
systems composed of point mass charged particles where the charge is small enough that 
electromagnetic radiation may be neglected. It is assumed that such charges produce a 
non-negligible contribution to the metric, and that their motion describes geodesics in 
the total metric which consists of that due to the charge itself and that due to the external 
environment of the charge. The above, together with several other assumptions yields 
the customary Einstein-Maxwell relations. It is demonstrated that this construction is 
not merely a re-statement of the Einstein-Maxwell theory in different terms. 

1. Introduction 

The problem of geometrizing the E and H fields of  Maxwell is still 
unsolved. There have been many attempts at the construction of  such a 
'unified' field theory, but it is fair to say that none have won any particular 
acceptance. This is probably because no one has yet succeeded in giving a 
geometrical significance to the electromagnetic field. That is, the electro- 
magnetic field has often been related (by postulate) to certain properties of  
certain spaces but this does not constitute their geometrical significance. 
For instance, in Weyl's gauge invariant theory (Weyl, 1918), the vector 
potential of the electromagnetic field is made responsible for the fact that 
4-intervals have 'lengths' which are path dependent. At best, this only 
relates E and H to geometrical effects but, as Eddington (1960) has pointed 
out, does not give them the status of being a geometrical property of  space- 
time. Again, in the later developments of  Einstein (1945, 1955; Einstein & 
Staus, 1946) and Schroedinger (1947, 1948a, b), for example, we find our- 
selves even further removed from this goal, since, in these considerations, 
various requirements for Riemannian geometry are relaxed, yielding 
equations which, because of their form, are assumed to be those of  Maxwell. 
This method of  'identification' is also to be found in the five-dimensional 
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and projective theories (Bergmann, 1942). Finally, we should mention the 
rather different approach of Rainich (1925) and Wheeler (1961). In their 
considerations the E and H fields are related to geometry through Rainich's 
proof that they can (in certain cases) be expressed in terms of the Ricci tensor. 
Again, this constitutes no geometrical interpretation of these fields, but 
merely a relation to known geometrical quantities, such as the Ricci tensor. 

The present work is concerned with the problem of constructing a formu- 
lation of general relativity which simultaneously gives geometrical signific- 
ance to the electromagnetic field. In this formulation the E and H fields are 
not merely related to geometrical quantities but have a basic interpretation 
in terms of such properties. The theory to be presented does fall short in 
some ways, however, and is only to be considered as a first exploration along 
a rather different tack. It may be said that the ensuing theory is primarily 
(but not completely) the construction of a different language for the 
customary Einstein-Maxwell theory. 

Further, it is to be noted that there may be many ways to satisfy the basic 
physical requirements of the theory to be described. The author has selected 
but one (the simplest to him) to consider in detail. The presentation really 
becomes, at one point then, the development of a model. 

Finally, rather than introducing the various necessary assumptions all at 
once in axiomatic fashion, they shall be introduced more naturally in the 
course of the development. In this way, their motivation may be clarified. 

2. Construction of the Theory 
Before getting to the details of the theory, we must first consider what is 

to be meant by a geometrical theory of gravitational and electromagnetic 
fields. 

We define a geometrical theory of gravitational and electromagnetic 
fields to satisfy the following principles: 

(1) Point mass particles (charged or not) describe geodesics in space- 
time. 

(2) The field equations describing space-time depend only on get- 
metrically defined quantities, except for the appearance of certain 
constants. 

The goal of the present work is to construct a formulation satisfying 
these two requirements, for a system composed of neutral and/or charged 
point particles where the charges are all of very small magnitude, which will 
also yield the customary Einstein-Maxwell description. 

It will be assumed that the stress tensor due to the masses themselves 
vanishes outside the masses where it is singular. 

We first momentarily remind the reader of the basic relations involved in 
the Einstein-Maxwell theory--they are: 

G~ =-~Tu~ (outside of mass singularities) (2.1a) 
F,v.a + Fva.t, + Fav.~=O, F~;y=j ~' (2.113) 
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and 

8v 4' e 
- - -  = - -  F "v v (2.2) 
8r mo e 2 v 

where commas denote ordinary differentiation, semi-colons denote co- 
variant differentiation, Tu. is the stress-energy momentum tensor due to 
just the electromagnetic field, Gv. is the Einstein tensor, and vl. denotes the 
4-velocity of the particle. 

Equation (2.2) is only correct for a particle with vanishingly small charge, 
so that radiation effects, which depend on e 2, can be neglected. 

We begin our formulation with the assumption that a charged particle 
produces a non-negligible contribution to the metric, and that such a point 
mass charged particle moves along a geodesic in the combined metric due 
to the environment of the charge and the charge itself. Since the charge is 
assumed to be very small we shall assume that the total metric is a linear 
superposition of that due to the charge's environment and that due to the 
charge itself; that is, we assume that 

o 

gu~ =gu~ + %~ (2.3) 

o o 
where gu~ = g.u is the total metric, and gv~ = gvv is the metric due to sources 
external to the charge, and %~ = e., is the metric produced by the charge 
itself. 

From the above geodesic assumption we have 

d 2 x I~ dx  ~ dx  [~ 
de 2 + -r'g/3 de de : 0 (2.4) 

where de denotes arc-length due to the total metric and is given by 
de 2 = gv~.dx"dx ~, where/~gt3 is the symmetric connection given by 

F~'~ = �89 + g~g,~, - g ~ , ~ )  - gt~[c~fi, al g (2.5) 

and where Greek indices take values from 1 to 4, and Latin indices go from 
1 to3.  

Using the decomposition of the metric [equation (2.3)], we have 

o 

rg/3 =/'g/3 + A~/3 (2.6) 

where 

o o o 
1 ~  = g~[~f l ,  or] ~ (2.7) 

0 
Since /'~/3 and /'g~ are both symmetric connections, it follows that 

o 

A~# -= -P~/3 - -P~t3 is a tensor of the indicated rank. For the moment we shall 
not need the explicit form of A~B. 
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From equation (2.4) we now have 

d 2xt` o dx  ~ . dx*'dxr 
. . . .  , a t  - -  - -  ( 2 . 8 )  
d #  +/'g/3 d~ d~ ~'/3 d~ de 

Letting d~- denote the arc-length associated with the background metric 
0 

(i.e. dr 2 = gvvd .~dx  ~) we can write equation (2.8) as 

d2xt` o dx dx  ax dx  
d,  2 +/2,t` . . . .  A t̀  - -  - -  (2.9) 

~'~ dr  dr  \d'r] de 2 d.r ~ dr  dr  

where we have used the relations 

dx  u dxt` dr  d2 x~ [d'r\ 2 d2 xV dxU d2"r (2.10) 

along the particle path in space-time. 
Further, from the definition of dr and de, we have 

axt`axV (2.11) 
] = i + % , ,  dr dr 

Now we can obtain an equation of the form of equation (2.2)by assuming 
t h a t  E44 = 0 in some frame for which all dx~/dr = 0. (Note that this does not 
imply that E44 = 0 in every rest frame of the charge.) 

Equation (2.11) then gives 
de 
- - =  1 ( 2 . 1 2 )  
dz 

along the particle path in space-time. 
We see then that segments along the particle path have the same 4-length 

0 
in either metric; g ~  or g~& Of course, this will not be true in general for 
segments not on the particle path. 

We note that equation (2.12) could have been extracted from equation 
(2.11) by requiring, instead, that %~ be anti-symmetric. This, however, 

0 
would have prevented us from assuming that both g~# and g,,g were sym- 
metric. The associated connections would then not both be symmetric 
and could not both be identified with the Christoffel symbols, One would 
then have to postulate the dependence of such connections on the metric. 
We have avoided this assumption at the expense of the simpler (to us) 
postulate following equation (2.11). 

Returning to equation (2.12), we obtain 
d 2 ~- 
de---- ~- = 0 (2.13) 

along the particle path. 
Therefore, equation (2.9) takes the form 

3vt` . dx  ~ dx  ~ 
=--At` - -  - -  (2.14) 

3~" ~ dr  dT 
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Comparing equations (2.4) and (2.14) we see that a path which is a 
geodesic in the total metric, g~/3, in general is not a geodesic in the back- 

0 
ground metric, g~.  

We now see how to retrieve equation (2.2) from our formalism; we shall 
let -A~/3v ~ essentially play the role of the Maxwell field tensor, and shall 
re-interpret the customary relation (2.2) to hold in the background metric, 
not in the total metric. For the most part, what is regarded as the metric in 
the customary formulation will be replaced by the background metric in 
our formulation. 

We therefore assume that, at the particle event 

-Agg v ~ = ~ Fr (2.15) 
m o c 

where FU~ is the Maxwell field tensor, and where mo is the rest mass of the 
particle. This relation really amounts to an interpretation of  thefield tensor 
in terms of  geometrical quantities. 

We assume then that the following Maxwell equations are satisfied 

e 
= - - f '  (2.16) ( - -d~ /3  v~); ,8 moe2 

and 
(A.~ v~),. + ( a ~  v"),. + ( a ~ .  v~).~ = 0 (2.17) 

Therefore, equation (2.14) takes the form 

~v ~t e 

8r rno~ F~*vI~ (2.18) 

and we have recovered the customary formalism except for the field 
equations. 

It is important to note here the very different interpretation being given 
to the field tensor, Fu~. In the customary formulation the field tensor is 
composed of electric and magnetic fields acting on a charged test particle, 
these fields being produced by other charges. In the present formulation, 
these E and H fields acting on a charge are considered as manifestations of 
metrical properties produced by that same charge, these metrical properties 
being, however, in part produced by the other charges. 

Before discussing the field equations, we shall consider the present 
interpretation in more detail. 

From the discussion preceding equation (2.15) we have that each charge 
, ,u ~. acts as a source for all the others production of A ~ v  . This is a Machian 

type of mechanism which doesn't seem to be found in the customary formu- 
lation of general relativity. We notice also that A~/3v ~ only has relevance at 
the test particle event. This means that the electromagnetic field only need 
be considered at the location of the detecting charge. For very small e, as 
we are requiring, where electromagnetic radiation effects may be neglected, 



128 JACK corm 

this interpretation of  the field is valid, as considerations in the Wheeler- 
Feynman absorber theory of radiation shows (Wheeler & Feynman, 1945, 
1949). Finally, we note the introduction of  the non-geometrical quantity, e, 
in our equations. This, however, seems no worse than the introduction of  the 
mass, rn, in conventional general relativity theory. Neither theory com- 
pletely explains its sources. In the conventional theory one can define rn as 
a suitable integral of  the pseudo-energy momentum tensor; in our case, we 
could define e as an integral of  A~Iy' over a suitable closed surface. 

3. Solution for AI~# and %~ 

The quantities, A ~ ,  must depend on the 4-velocity of  the test charge in 
such a way that A~r ~' is independent of  {va}, by assumption. Thus, equa- 
tions (2.16) and (2.17) are to be regarded as ordinary differential equations 
in the quantities A~v  ~'. 

After solving these equations for these quantities we are still left with the 
problem of finding the A ~  themselves. The expression of the A ~  in terms 
of the A~/3v ~ (or FO u) is non-unique, and we now consider the simplest (to 
the author) such solution, which may be said to comprise then a special 
model. 

We take the A~t3 to be given by the relation (at the particle event only) 

e /.t 
= + - F o "  v 0 . 1 )  

This expression yields the necessary relation 

e 
v = r e .  

and preserves the symmetry of  A~g in the indices e and ft. (Note that another 
solution is given by adding the term, A"a~atj, where Au is an arbitrary 
4-vector, and a~ is the 4-acceleration.) 

We now consider equation (3.1) in the 'flat-space' limit, where it is 
possible to make inferences about the metric, %/3. 

By the flat-space limit we mean that the test charge under consideration is 
0 

very far from all other masses, so that g~t~ ~ ~7~t3 = d i a g ( - l , - 1 , - 1 , 1 ) .  Here, 
even though the e~/~ are small compared with the ~/~ (except when e r t )  it 

is still possible that/'g/3 is negligible in comparison with quantities contain- 
ing derivatives of  the %~,. 

To first order in the small quantities e,~, we have 

0 0 

A~/3 --/'g/3 - / "g~ -- ~Tu~ el '  - r/~' ea~/',a (3.2) 

Thus, in the flat-space limit we have 

A~g ___ � 8 9  ~ + ~/3~, ~ - c~,u) (no sum on/x) (3.3) 
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From this we directly obtain the relations 

J Ai~ + A~ = -E~s ' 

A4~ = �89 ~ (3.4) 

Using these relations and equation (3.1) we can now find the proper time 
derivatives of the e ~  along the particle path, as follows 

dE,j 
dr = E,~, ~ v/3 = -(d~.~ + A~) vg = 0 (3.5) 

Similarly, 

and 

d~44 
d'/" = E44' ~/)~ = 2A~13vfl = 0 (3.6)  

dE~4 2e _ i (3.7) 
dr .... r v/3 = -(A~/3 - A~) v ~ = moc2 F4 

Thus, only the space-time components of r change along the particle 
path. Therefore, for particles which have come into the field from outside 
of it, the r and E44 have values determined by zero field. Apparently, these 
components of ~ only depend on conserved kinematical quantities. 

It is also of interest to calculate the ~ .  a when v = 0 (when v~ = (0, 0, 0,1). 
Such quantities will be denoted as ~(~~ a. We obtain the following relations 

~(o). _ 0, E <~ = 0, .(o) ~ Fj~ i J,/~ - -  44, 4 ~[4, J -~- 

( 3 . 8 )  
(0) 2e 4 ,(0) _ 2e _4 
,4, 4 = - m 0 c  ~ F , ,  ~ " " '  - -  mo  c ~ e '  

We note that ~44 behaves locally in proportion to the potential at the 
location of  the charge. 

4. Measureable Consequences 

So far, it appears like the present formulation is merely a different 
language for the customary Einstein-Maxwell theory. If  this were true, we 
could not expect any testable predictions differing from those of the 
customary formulation to arise from our theory. It turns out, however, that 
the present formulation is more than just a rephrasing of the Einstein- 
Maxwell theory. We can see that this must be so since, for instance, in the 
flat-space limit where the customary theory predicts that the (entire) 
metric is essentially diagonal, we have only that the background metric is 
diagonal. The metric, though vanishingly small, may still be detectable by 
simuttaneonsly relating it to geometry and the electromagnetic field. 

9 
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Quantitatively, we proceed as follows: 
We have, from equation (2.6), the exact relation 

0 

and therefore, 

(4.1) 

,/3 
0 0 

where g and g denote the determinants of the metric g ~  and g ~  respectively. 
In the flat-space limit we then have 

A~O _ (In x/g).t3 (4.3) 

Therefore, using equation (3.4) we have 

A ~  1 1 = (In a/g)./3 (4.4) 

Finally, utilizing equation (3.8), for the case when the charge is 
momentarily at rest we have 

e 4 
moc2 F, = (In x/g) . ,  (4.5) 

This relation is testable, in principle, for it claims a relation between 
0 

geometry [(In x/g).i], in a co-ordinate system w h e r e / ~  - 0, and a measur- 
able field, F~ 4. Of course, at the location of the charge things actually get 
complicated because the mass of the charge will also contribute to the metric 
there. However, this contribution might be accounted for, and subtracted 
off. At any rate, what is being considered here is a matter of principle. 
Thus, the present formulation is more than merely a re-statelnent of the 
customary interpretation. 

5. The Field Equations 

Our final assumption concerns the field equations. 
According to requirement (2.2) these should depend only on geometrical 

quantities. We shall also invoke the assumption, once again, that quantities 
depending on the (entire) metric in the customary formulation shall depend 
only on the background metric in our formulation. 

Thus we assume that the field equations are given by replacing, in the 
customary expression, the F ~v entering T ~v by the A ~  v ~ as given in equation 
(2.15), we have then 

0 (me t2 )2  
G ~'v = - K  - -  . (A~ov~'A~vv ~ +k#'"d~,a~vaA~v a} (5.1) 

where the quantity on the left-hand side is the Einstein tensor in the back- 
ground metric. 
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If  the charge on the point particle is zero, the above right-hand side 
vanishes, and we recover the customary Einstein relation for the vacuum, 
(that is, where the matter tensor vanishes). 

Presumably, the right-hand side of equation (5.1) above describes some 
condition of balance for the charge, but it seems to have no known overall 
geometrical interpretation. 

It would have been tempting to have postulated, instead, an equation 
like, Gu, = 0, at the particle event, where Go, is the Einstein tensor in the 
entire metric g~/3- If  such equations are, however, to be equivalent to the 

0 
relations G,,  - -~:T,v, then we would have to postulate certain additional 
relations between the A ~ v  ~, which would then overdetermine them. 

Equations (5.1), (2.16), (2.17) and (2.18) thus comprise the basic relations 
of our formulation. 
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